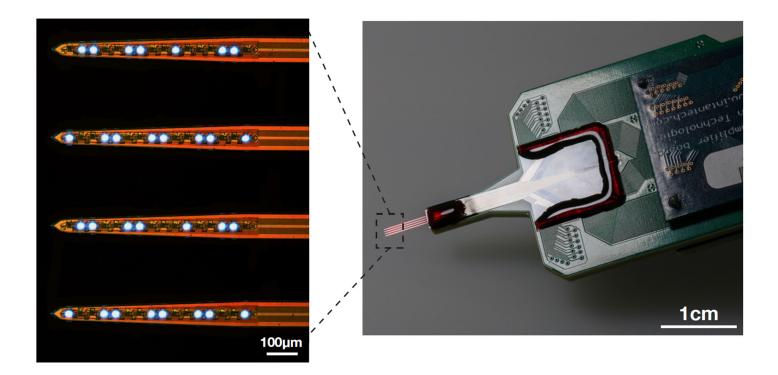


HectoSTAR Optoelectrode Datasheet


Features

- 32/64 μLEDs, 8 x 17 μm each, 16/32 per shank
 - Emission Peak λ = 465 nm and
 FWHM = 40 nm
 - Typical irradiance of 33 mW/mm²
 (@ max operating current of 100 μA)
- 64/128 recording channels, 32/64 per shank
 - Electrode impedance of 1-2
 MΩ at 1 kHz
 - Noise floor ≤ 7 µV_{rms} using an Intan 128 CH Amplifier Board
- Custom stimulation output patterns with a 1µA resolution @ 20kHz update rate for up to 12 seconds of repeatable duration.
- 6 mm shank length, < 20g total weight
- Please direct questions or concerns to info@neurolighttech.com

Description

NeuroLight Technologies (NLT) provides blue (465nm) μ LED optoelectrodes for head-fixed behaving animal studies. NLT's probes use monolithically-integrated microLEDs for high spatiotemporal optical stimulation. These probes incorporate 64 μ LEDs and 128 recording sites in 2 and 4-shank configurations, and 32 μ LEDs and 64 recording sites in a single shank configuration. Electrophysiological recordings can be performed with either Intan or Plexon®'s 128 channel headstages. Precise control of individual μ LEDs is achieved with NLT's stimulation module, allowing for arbitrary waveform stimulation patterns at an update rate of 20 kHz and a step resolution of 1 μ A.

Probe Types

NLT provides three different probe configurations. Four and dual shank configurations contain 64 μ LEDs and 128 recording sites, and the single shank configuration contains 32 μ LEDs and 64 recording sites. Technical details for each configuration are shown in Table 1 below. Figures 1-3 show a graphical representation of each probe type and the pitch between the electrodes and μ LEDs.

Configuration	1-Shank	2-Shank	4-Shank	
Shank Length	6mm	6mm	6mm	
Recording Sites	Recording Sites 64		128	
Recording Pitch	40µm	40μm	40µm	
μLEDs	32	64	64	
Emission Peak	465nm	465nm	465nm	
Irradiance	Irradiance 33mW/mm²		33mW/mm²	
μLED Pitch	μLED Pitch 40μm		40μm	
Shank Pitch	ank Pitch N/A		300µm	
Coverage (HxW)	Coverage (HxW) 1300µm		700μm x 900μm	

Table 1: Probe Configuration Technical Details

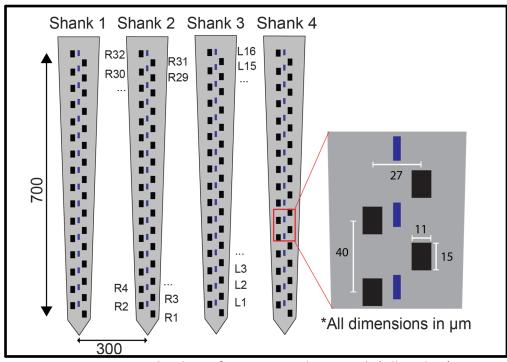
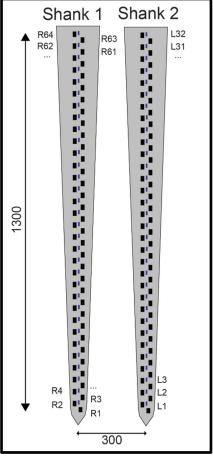
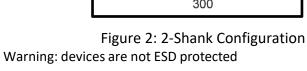




Figure 1: 4-Shank Configuration and Site Pitch (All Probes)

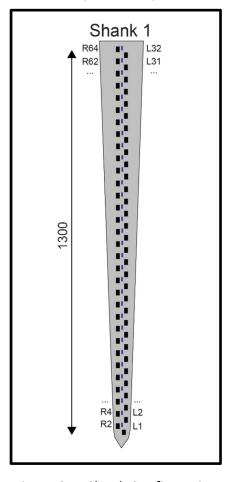


Figure 3: 1-Shank Configuration

Typical System Configuration

The HetctoSTAR optoelectrodes are controlled using a single FPGA interface board that allows for connection to an Intan 128 channel headstage for neural recordings and an NLT stimulation module. The stimulation module enables the independent control of individual μ LEDs with an update rate of 20kHz at a step resolution of 1uA. Control software is currently implemented in an Open-Ephys plugin. Curating stimulation patterns can be customized using a MATLAB GUI and users can select waveform types and their associated parameters. Stimulation files are then uploaded to the FPGA and can be triggered via the user or through external TTL inputs. Figure 4 shows the block diagram of the system and Figures 5 and 6 show the actual system and the stimulation module, respectively.

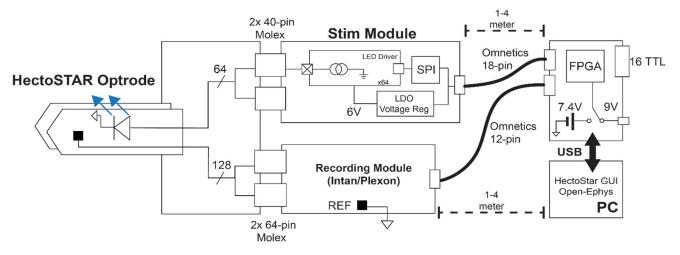


Figure 4: Block Diagram of Recording and Stimulation Control

Figure 5: HectoSTAR Probe Module Connected with Intan Headstage on Top and Stimulation Module at Bottom (left), and FPGA Controller Hardware (Right)

Warning: devices are not ESD protected

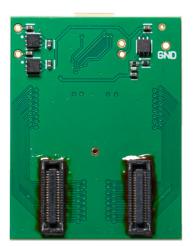


Figure 5: Stimulation Module Top View (left) and Bottom View (Right)

Connectors & Mapping

Recording connector: 2x 64-pin Molex

32 33 34 35 36 37 38 39 40 41 42 43 44 45 51 52 53 54 55 56 57 58 60 61 62 96 97 98 99 100 101 เกลกลกลกลกลกลกลกลกลกลกลกลกลกลกก 102 103 104 105 106 107 108 109 110 111 112 114 115 Top 116 117 118 119 120 121 123 2x Molex 502430-6410

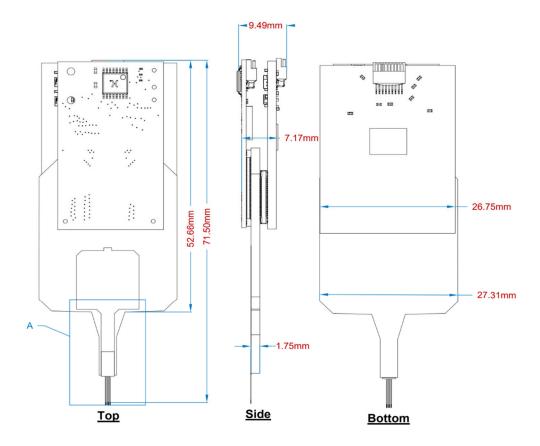
Recording Site Pin Mapping (4 Shank)

Pin#	Electrode #		Pin#	Electrode	
0	S1R2		32	S2R2	
1	S1R4		33	S2R4	
2	S1R6		34	S2R6	
3	S1R8		35	S2R8	
4	S1R10		36	S2R10	
5	S1R12		37	S2R12	
6	S1R14		38	S2R14	
7	S1R16		39	S2R16	
8	S1R18		40	S2R18	
9	S1R20		41	S2R20	
10	S1R22		42	S2R22	
11	S1R24		43	S2R24	
12	S1R26		44	S2R26	
13	S1R28		45	S2R28	
14	S1R30		46	S2R30	
15	S1R32		47	S2R32	
16	S1R31		48	S2R31	
17	S1R29		49	S2R29	
18	S1R27		50	S2R27	
19	S1R25		51	S2R25	
20	S1R23		52	S2R23	
21	S1R21		53	S2R21	
22	S1R19		54	S2R19	
23	S1R17		55	S2R17	
24	S1R15		56	S2R15	
25	S1R13		57	S2R13	
26	S1R11		58	S2R11	
27	S1R9		59	S2R9	
28	S1R7		60	S2R7	
29	S1R5		61	S2R5	
30	S1R3		62	S2R3	
31	S1R1		63	S2R1	

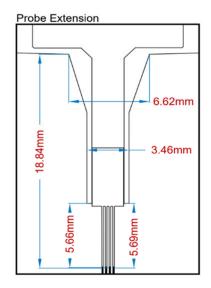
Pin#	Electrode#			
95	S3R2			
94	S3R4			
93	S3R6			
92	S3R8			
91	S3R10			
90	S3R12			
89	S3R14			
88	S3R16			
87	S3R18			
86	S3R20			
85	S3R22			
84	S3R24			
83	S3R26			
82	S3R28			
81	S3R30			
80	S3R32			
79	S3R31			
78	S3R29			
77	S3R27			
76	S3R25			
75	S3R23			
74	S3R21			
73	S3R19			
72	S3R17			
71	S3R15			
70	S3R13			
69	S3R11			
68	S3R9			
67	S3R7			
66	S3R5			
65	S3R3			
64	S3R1			

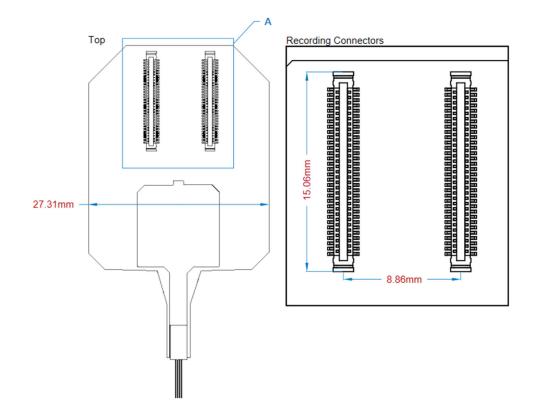
Pin#	Electrode #			
96	S4R2			
97	S4R4			
98	S4R6			
99	S4R8			
100	S4R10			
101	S4R12			
102	S4R14			
103	S4R16			
104	S4R18			
105	S4R20			
106	S4R22			
107	S4R24			
108	S4R26			
109	S4R28			
110	S4R30			
111	S4R32			
112	S4R31			
113	S4R29			
114	S4R27			
115	S4R25			
116	S4R23			
117	S4R21			
118	S4R19			
119	S4R17			
120	S4R15			
121	S4R13			
122	S4R11			
123	S4R9			
124	S4R7			
125	S4R5			
126	S4R3			
127	S4R1			

■ LED Connector: 2x 40-pin Molex

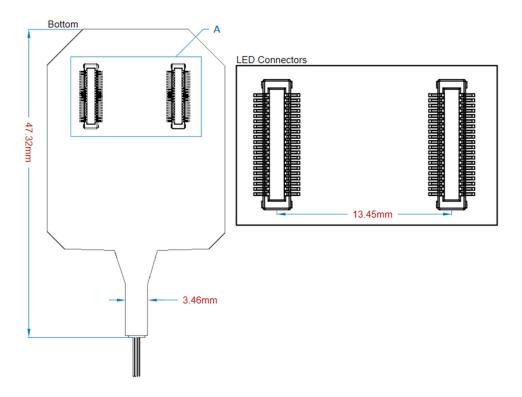

19 💶 18 💷 58 🞞 1 21 TT 61 17 🖿 57 1 22 **1** 62 16 🗔 **1** 23 56 🗖 TI 63 15 ा **1** 24 14 🗀 25 13 🚾 **1** 26 27 **1** 28 29 30 49 🗖 31 48 🗖 32 47 🗖 33 46 🗖 5 | 4 | 3 | 2 | 1 | 1 | 34 45 TE Bottom 44 **1** 35 43 **3**6 □ 76 37 42 77 38 41 78 39 2x Molex 0559090474

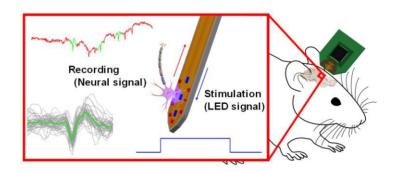
LED Pin Mapping (4 Shank)


Pin#	LED#	Pin#	LED#	Pin#	LED#	Pin #	LED#
0	LED0	20	LED16	40	LED32	60	LED48
1	LED1	21	LED17	41	LED33	61	LED49
2	LED2	22	LED18	42	LED34	62	LED50
3	LED3	23	LED19	43	LED35	63	LED51
4	LED4	24	LED20	44	LED36	64	LED52
5	LED5	25	LED21	45	LED37	65	LED53
6	LED6	26	LED22	46	LED38	66	LED54
7	LED7	27	LED23	47	LED39	67	LED55
8	LED8	28	LED24	48	LED40	68	LED56
9	LED9	29	LED25	49	LED41	69	LED57
10	LED10	30	LED26	50	LED42	70	LED58
11	LED11	31	LED27	51	LED43	71	LED59
12	LED12	32	LED28	52	LED44	72	LED60
13	LED13	33	LED29	53	LED45	73	LED61
14	LED14	34	LED30	54	LED46	74	LED62
15	LED15	35	LED31	55	LED47	75	LED63
16	LGND	36	LGND	56	LGND	76	LGND
17	LGND	37	LGND	57	LGND	77	LGND
18	LGND	38	LGND	58	LGND	78	LGND
19	LGND	39	LGND	59	LGND	79	LGND


^{*}This mapping does not currently reflect the physical shank location of the LEDS

Device Dimensions





Applications

- Optogenetic-control of local neural circuits in awake, head-fixed studies
- Square-wave excitation for precise timing control
- High-fidelity stimulation patterns, triggerable from external inputs. Up to 12 seconds of repeatable duration.

